J. B. BERLIER.

PNEUMATIC APPARATUS FOR REMOVING NIGHT SOIL FROM CESSPOOLS.

No. 266,416.


WITNESSES:

1. REUBEN H. MCMURDO
2. JACQUES BAPTISTE ROLLAND

INVENTOR:

JACQUEMART BERLIER

ATTORNEY
J. B. BERLIER.

PNEUMATIC APPARATUS FOR REMOVING NIGHT SOIL FROM CESEPOOLS.
No. 266,416.


WITNESSES:
1. [Signature]
2. [Signature]

INVENTOR:
[Signature]

ATTORNEY
To all whom it may concern:

Be it known that I, JEAN BAPTISTE BERLIER, of Paris, France, have invented an Improved Pneumatic Apparatus for Removing Night-soil from Cesspools, applicable also to public urinals and apparatus used therein; and I do hereby declare that the following is full, clear, and exact description of the same, reference being had to the annexed sheets of drawings, making a part of the same, and that I have received French Letters Patent for said invention, dated March 14, 1851, and numbered 141,763, for the term of fifteen years.

This invention relates to a combination of means and arrangements of apparatus constituting a complete pneumatic system of removing night-soil, whereby the deposit, handling, and carting of night-soil are avoided, and the escape of noxious gas and vapors entirely prevented.

The chief feature of the invention consists in the employment of an extensive system of pneumatic tubing for conveying the night-soil from the cesspool or place where it is deposited to the works, to be converted into chemical products and marketed.

In order that the invention may be more readily understood, I have illustrated examples of the various apparatus in the accompanying drawings.

Figures 1 and 2 represent, respectively in longitudinal and transverse section, the sewer or sub-way in which the pneumatic tube is laid, and also illustrating the discharge of the night-soil into said tube through the portable strainer hereinafter described.

The pneumatic tube G is formed of strong pipes, united by spigot and socket joints or otherwise, and either placed in a sewer or sub-way, as shown, or laid in the ground. The tube G is provided at intervals with a branch pipe, F, fitted with a cock, upon which may be placed a gage to indicate the vacuum at different points of the tube, so that any obstruction may be readily localized.

A is a pipe supplying water under pressure for flushing the pneumatic tube, a valve, a, at other times intercepting the communication between the two pipes A and G. A special discharge-pipe is provided for carrying off the flushing-water, as will be hereinafter explained.

The night-soil is led into pipe G through the pipe B, which communicates with the portable strainer D through the valve-box C, represented in vertical section in Fig. 1, and also on a larger scale in Fig. 3, which is let into the pavement, as shown, and is constructed of a cast-iron casing, a', with a strong cast-iron cover, b, level with the ground, having a roughened surface and secured by a lock, the key-hole of which is closed by a screw plug. The valve-box incloses a screw-down valve, e d, the valve d being of India-rubber, by which the thoroughfare through the pipe B is regulated, and also a mouth-piece or short pipe, f, placed just below the ground level and closed by a locked cast-iron cover. When connection is to be made the cover b of the casing a' is taken off, the cover of piece f of pipe unfastened, the valve d screwed up, and the pipe from the strainer D is then connected to the pipe f. The casing a' also contains a two-way cock, g, on a small pipe, h, branching from the upper part, e, of pipe B, for the attachment of a pressure-gage.

The cart or tank containing the night-soil is connected by a hose, E, attached at t to the portable strainer D, and the strainer D (which is separately represented on a larger scale in Figs. 4, 5, and 6) is connected, by a pipe attached to it at j, to the pipe f in the valve-box. The strainer D is made of a wrought-iron casing closed by an air tight cover, k, and contains concentric gratings l for intercepting foreign matters.

Figs. 7 and 8 represent an elevation and plan of the arrangement of machinery and apparatus for discharging the soil at the works. In these two figures H is the discharge-pipe for the water used for flushing the pneumatic tube, the communication being closed by a valve, B', when the night-soil is being exhausted. I is the tank in which the soil is received. e d e are valves for controlling the different stages of the operation; J, rotary or force pump communicating with tank I, and also by pipe N with the general depot of night-soil; K, air pump; L, steam-engine for driving the shafting B, which works pumps; M, exhaust-pipe connecting air-pump K with tank I; O, tank containing a little water through which the gases are discharged from the air-
pump, passing thence by pipe P to the boiler-

10 formace, where they are consumed; e', overflow-

pipe of tank O. An engine of five-horse power 
would be sufficient for a pneumatic tube three 
5 kilometers long and eighteen centimeters in 
diameter. With such a tube a vacuum of 
twenty-one inches of mercury can be obtained 
by means of an air-pump K in thirty-five minutes. 
At starting, the air-inlet cock g² should be 
closed and the cock f³ in pipe M opened, the 
valves c' and d' closed and d' opened, the operation 
being then performed in the following manner: 
The gage on pipe g in the valve-box C shows 
the night-man when the pressure is such that 
he should commence operations. Said gage is 
a suitable pressure gage, showing while the 
valve d' is closed how much pressure there is 
in the pipes B, k'. The valve d' in the valve-

15 box and that of the tank are then opened, and 
the soil is exhausted through the strainer D 
into the tube G, by which it is conveyed into 
tank I. The engineer at the works watches 
the level of the soil in the tank I, which is 
indicated by a gage-glass, and when sufficiently 
full the working of the air-pump K is stopped. 
The cock f³ is then closed and valve c' opened, 
and the rotary pump j started to pump the 
soil from tank I to the general depot, the vac-

20 um being all the while maintained in tank I. 
By this mode of operating the work is per-
formed uninterruptedly, the night-soil con-
tinuously flowing into tank I, and being simul-
taneously pumped thence to the general de-
pot. The exhausting action is so regulated as 
to maintain the same pressure in the tube. 
The air-pump, however, should be left in com-
munication with the tank to remove any air 
that may leak in. The discharge of the tanks 
or carts into the pneumatic tube may be per-
formed in the street without nuisance, as no 
smell escapes, the gases being rapidly exhaus-
ted to the works. The discharge of the soil 
from the tank I is facilitated by the agitation 
or state of apparent ebullition due to the ex-

25 traction of the air in the mass by the pump 
and the evaporation produced by the diminu-
tion of pressure, whereby the solid matters 
are maintained in suspension in the liquid. 
This ebullition has an important influence up-
on the success of the operation, as it prevents 
all deposit of the solid matters. 

Instead of conveying the tanks filled with 
night-soil to a certain point to be discharged 
by the pneumatic tube, as above described, 
the said tube may be laid in the ground or in 
the sewers in proximity to the houses, and 
connected by pipes with the tanks and strainer-

30 s of this invention, which are placed in the 
house-vaults or beneath public urinals. 
I employ novel arrangements for collecting 
the mine, from which various products may 
be obtained. Figs. 9 and 10 represent an ar-

35 rangement which may be employed when it is 
required to siphon the pneumatic tube. Fig. 
9 is a vertical longitudinal section of the main 
sewer opposite a branch sewer. Fig. 10 is a 
section at right angles thereto through the 
branch. A' is the main sewer, and B' the 
branch opening into it; C', main pneumatic 
tube, and D' branch pneumatic tube connect-
ing with it; E', pipe for collecting the gases, 
communicating with the main pneumatic tube 
by pipes F', said pipe E' also serving to bal-

40 ance the pressure of the gases in case of ob-

struction of the bend of the siphon. Suppos-
ing the matters to arrive suddenly from o', and 
that there is an accumulation of gases at e', a 
momentary stoppage would be caused; but by 
the arrangement shown the gases escape at e' 
through pipe F' and reservoir E', and continue 
their progress toward o', while the matters 
contained in the bend b' of the siphon also re-

45 sume their progress toward o'. 

1 claim— 

1. The pneumatic tube G, combined with 85 

purgé-pipe A, cock a, supply-pipe B, and with 
apparatus, substantially as described, for cre-

ating suction in pipe G, as and for the purpose 
specified. 

2. The strainer D, combined with pipes i j 90 

and gratings l and with the pneumatic tube G 
and pipe B, with which it communicates, sub-

stantially as specified. 

3. The valve-box C, combined with valve c 95 
d, mouth-piece f, and with the pneumatic tube 
G and pipe B, with which it communicates, 
substantially as herein shown and described. 

4. The combination of the pipe E, strainer 
D, valve-box C, pipe B, pneumatic pipe G, 
water-supply pipe A, and valve a with appa-

ratus, substantially as specified, for creating 
a vacuum in the pipe G, as set forth. 

5. The combination of pipe C', having bend 
b', with the pipes F' and E', for the passage 
of gases where the pneumatic tube is siphoned 
in case of any obstruction in the bend of the 
siphon, as described.

JEAN BAPTISTE BERLIER.

Witnesses: 

RBT. M. HOOPER, 
JEAN BAPTISTE ROLLAND.