A NEW METHOD OF CONSTRUCTING SANITARY SEWERS.

A sanitary sewer is in every sense of the word, cannot be built of either brick or vitrified crock. No matter how great and cruel are taken in the construction, it must be either more or less seepage. If not at first, then later the sewer rots at pace.

The vitrified pipe sewers cannot be perfectly sanitary, for the reasons that enough cement cannot be inserted in the joints to prevent seepage and the pipe rests on the collars at the joints and either breaks through the center of the cement, thereby admitting seepage in almost every joint of pipe. Reinforced concrete appears offers one solution of the problem.

The United Sewer Pipe Co., of Jackson, Mich., have introduced molds and machinery for manufacturing reinforced sanitary concrete sewer pipe that is free from practicable defects.

One of our engravings shows the building of a five-foot reinforced concrete sewer at Jackson, Mich., and the same pipe is used for the twelve foot pipe into the ditch. This pipe can be made in any size from 15 inches to 10 feet in diameter. The particular feature that appeals to everyone is the method of the reinforced sewer builder is the manner in which the joints are coupled together. This is done by an iron band running around each joint of pipe and through the loops of the iron lars, which are imbedded in the cement and pass through the pipe. When this coupling is made the joints are cemented, forming one continuous piece of pipe. The cement adhering to the iron bands makes the joint as strong as any part of the pipe. Seepage is impossible and waste is absolutely prevented.

Our other engraving shows a three-foot diameter section of reinforced concrete sewer pipe sixty days old, carrying a weight of 20,000 pounds. This shows the enormous strength and durability of the pipe. It is not made up in a special state, or "con- strained" state of the molecule, corresponding, according to Hittorff, to a higher volume of the metallic iron. A metal is considered in modern times as formed of atoms which are bound by electric charges, either positive or negative. M. W. Müller, a German scientist, in treating the question of the passive state of metals, shows that this fundamental hypothesis is only compatible with the theory of Schönherr as amplified by Hittorff. In consequence, especially in those cases where the metal is reserved in a special state, the properties are, as before, in the presence of non-metallic layers of ex.

Passivity of Metals.

The so-called passivity of metals is a state in which they remain immaterial, just as plants do not grow in the subsoil. The first, which is due to the difference of the two elements, no longer obtains the characteristics of the original one. What is in these cases the same as in the presence of non-metallic layers of ex.

The second theory, championed by Schönherr, Bernoullis, and Hittorff, explains it by the formation of a surface film, which is precipitated in a special state, or "constrained" state of the molecule, corresponding, according to Hittorff, to a higher volume of the metallic iron. A metal is considered in modern times as formed of atoms which are bound by electric charges, either positive or negative. M. W. Müller, a German scientist, in treating the question of the passive state of metals, shows that this fundamental hypothesis is only compatible with the theory of Schönherr as amplified by Hittorff. In consequence, especially in those cases where the metal is reserved in a special state, the properties are, as before, in the presence of non-metallic layers of ex.

Prevention of Ball Formations.

In Russia, Austria-Hungary, Italy, Switzerland, France, and Germany, certain effluvia are being made to prevent the ball storms that ravage the crops, the vineyards, and the gardens. Commonly loaded with pum.

In Russia, Austria-Hungary, Italy, Switzerland, France, and Germany, certain effluvia are being made to prevent the ball storms that ravage the crops, the vineyards, and the gardens. Commonly loaded with pum.

In Russia, Austria-Hungary, Italy, Switzerland, France, and Germany, certain effluvia are being made to prevent the ball storms that ravage the crops, the vineyards, and the gardens. Commonly loaded with pum.

In Russia, Austria-Hungary, Italy, Switzerland, France, and Germany, certain effluvia are being made to prevent the ball storms that ravage the crops, the vineyards, and the gardens. Commonly loaded with pum.

In Russia, Austria-Hungary, Italy, Switzerland, France, and Germany, certain effluvia are being made to prevent the ball storms that ravage the crops, the vineyards, and the gardens. Commonly loaded with pum.